Publications

Feedstock Variability/Specification Development

Carpenter, D., Westover, T., Czernic, S., et al., (2014). Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chemistry 16: 384-406. doi:10.1039/C3GC41631C.

Carpenter, D., Westover, T., Howe, D., et al., (2017). Catalytic hydroprocessing of fast pyrolysis oils: impact of biomass feedstock on process efficiency. Biomass & Bioenergy 96: 142-151. DOI: 10.1016/j.biombioe.2016.09.012

Emerson, R., Hoover, A., Ray, A., Lacey, J., Cortez, M., Payne, C., et al., (2014). Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks. Biofuels 5 (3):17. DOI: 10.1080/17597269.2014.913904

Hernandez, S., Westover, T.L., et al., Feeding properties and behavior of hammer- and knife-milled pine, In press, accepted manuscript. doi.org/10.1016/j.powtec.2017.07.002.

Hoover, A., Tumuluru, J., Teymouri, F., Moore, J., Gresham, G., (2014). Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover. Bioresource Technology 164:128. doi.org/10.1016/j.biortech.2014.02.005

Howe, D.,Westover, T., Carpenter, D., et al., (2015). Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks: An Integrated Study of the Fast Pyrolysis/Hydrotreating Pathway. Energy & Fuels 29: 3188-3197. DOI: 10.1021/acs.energyfuels.5b00304 

Kenney K.L., Smith W.A., Gresham G.L., Westover T.L., Understanding biomass feedstock variability, Biofuels 2013; 4(1): 111-127. DOI: 10.4155/bfs.12.83

Li, C., Aston, J. E., Lacey, J. A., Thompson, V. S., and Thompson, D. N., (2016). "Impact of feedstock quality and variation on biochemical and thermochemical conversion." Renewable and Sustainable Energy Reviews 65: 525-536.  doi.org/10.1016/j.rser.2016.06.063

Narani, A., Coffman, P., Gardner, J., Li, C., Ray, A.E., Hartley, D.S., Stettler, A., Konda, N.V.S.N.M., Simmons, B., Pray, T.R., Tanjore, D., (2017). Predictive modeling to de-risk bio-based manufacturing by adapting to variability in lignocellulosic biomass supply. Bioresource Technology, 243, 676-685.  doi.org/10.1016/j.biortech.2017.06.156

Ramirez Corredores, M. M. and May, L. (KiOR, Inc), Process for enhancing process performance during the thermocatalytic treatment of biomass, Patent No. US2015240166. (14/634,286) 2015, Aug 27.

Ray, A., Hoover, A., Nagle, N., Chen, X., Gresham, G., (2013). Effect of pelleting on the recalcitrance and bioconversion of dilute-acid pretreated corn stover under low- and high-solids conditions. Biofuels 4:271.  DOI: 10.4155/bfs.13.14

Ray, A., Li, C., Thompson, V., Daubaras, D., Nagle, N., Hartley, D., (2017). Biomass Blending and Densification: Impacts on Feedstock Supply and Biochemical Conversion Performance. Biomass Volume Estimation and Valorization for Energy. Ed. J. S. Tumuluru. Rijeka: InTech.   DOI: 10.5772/67207 

Trendewicz, A., et al., (2015). Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics. Biomass and Bioenergy 74: 15-25.  doi.org/10.1016/j.biombioe.2015.01.001

Wang, W., Chen, X., Donohoe, B., Ciesielski, P., Katahira, R., Kuhn, E., et al., (2014). Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 1: chemical and physical substrate analysis. Biotechnology for Biofuels 7:57.  doi.org/10.1186/1754-6834-7-57

Westover, T.L., Ryan, J.C.B., Matthew, A.C., Hernandez, S., Hopper apparatus for processing a bulk solid, and related systems and methods, application no. 15/235,895, filed 08/12/2016.

Westover, T.L., Phanphanich, M., Ryan, J.C. Comprehensive rheological characterization of chopped and ground switchgrass, Biofuels 2015; 6(5-6): 249-260.  doi.org/10.1080/17597269.2015.1091189

Westover, T.L., et al., Impact of scale on thermochemical pretreatment of southern pine for pyrolysis conversion. Biofuels 2013; 4(1): 45-61.  

Williams, C., Emerson, R., Tumuluru, J., (2017). Biomass Compositional Analysis for Conversion to Renewable Fuels and Chemicals. Biomass Volume Estimation and Valorization to Energy. Ed. J. S. Tumuluru. Rijeka: InTech.  DOI: 10.5772/65777

Williams, C.L., Westover, T.L., et al., Determining thermal transport properties for softwoods under pyrolysis conditions, ACS Sustainable Chem. Eng, 2017; 5(1) 1019-1025.  DOI: 10.1021/acssuschemeng.6b02326


Modeling Feedstock Physical Performance

Ajayi, O.O., Lorenzo-Martin, C., Erck, R.A., Fenske G.R., “Analytical predictive modeling of scuffing initiation in metallic materials in sliding contact”  Wear Vol.301 (2013), 57-61. doi.org/10.1016/j.wear.2012.12.054.

Ajayi, O.O., Lorenzo-Martin, C., Erck, R.A., Fenske G.R., “Scuffing mechanism of near-surface material during lubricated severe sliding contact”  Wear  Vol.  271 (2011), 1750-1753.  DOI: 10.1016/j.wear.2010.12.086.

Crawford, N. C., Nagle, N., Sievers, D. A., & Stickel, J. J. (2016). The effects of physical and chemical preprocessing on the flowability of corn stover. Biomass and Bioenergy, 85, 126–134. doi.org/10.1016/j.biombioe.2015.12.015.

Crawford, N. C., Sprague, M. A., & Stickel, J. J. (2016). Mixing behavior of a model cellulosic biomass slurry during settling and resuspension. Chemical Engineering Science, 144, 310–320. doi.org/10.1016/j.ces.2016.01.028.

Hernandez S, Westover TL, et al. Feeding properties and behavior of hammer- and knife-milled pine, In press, accepted manuscript.  doi.org/10.1016/j.powtec.2017.07.002. 

Zhou, J., H. Huang, J. McLennan, P. Meakin, M. Deo (2017), A Dual-Lattice Discrete Element Model to Understand Hydraulic Fracturing in Naturally Fractured System, Hydraulic Fracturing Journal, 4(2). 

Guo L, Huang H, Gaston DR, Permann CJ, Andrs D, Redden GD, Lu C, Fox DT, Fujita Y. (2013) “A Parallel Fully-coupled Fully-implicit Solution to Reactive Transport in Porous Media Using Preconditioned Jacobian-Free Newton-Krylov Method,” Advances in Water Resources, 2013 53: 101-108.  doi.org/10.1016/j.advwatres.2012.10.010

Hershberger, J., Ajayi, O.O., Zhang, J., Yoon, H., Fenske, G.R.,  “Evidence of Scuffing Initiation by Adiabatic Shear Instability”  Wear  Vol. 258 (2005), 1471-1478.  doi.org/10.1016/j.wear.2004.10.010

Huang, H., Meakin, P., & Malthe-Sorenssen, A. (2016). Physics-based simulation of multiple interacting crack growth in brittle rocks driven by thermal cooling. International Journal for Numerical and Analytical Methods in Geomechanics, doi: 10.1002/nag.2523

Huang H, Spencer B, Hales J. (2014). “Discrete element method for simulation of early-life thermal fracturing behavior in ceramic nuclear fuel pellets.” Nuclear Engineering and Design, 278, 515-528.  doi.org/10.1016/j.nucengdes.2014.05.049

Kenney KL, Smith WA, Gresham GL, Westover TL. Understanding biomass feedstock variability, Biofuels 2013; 4(1): 111-127.  DOI: 10.4155/bfs.12.83

Liu, Y., Wassgren, C., (2016) Modifications to Johanson's roll compaction model for improved relative density predictions, Powd. Technol. 297, 294-302.   DOI: 10.1016/j.powtec.2016.04.017

Sitaraman, H., Kuhn, E. M., Nag, A., Sprague, M. A., Tucker, M. P., & Stickel, J. J. (2015). Multiphysics modeling and simulation of high-solids dilute-acid pretreatment of corn stover in a steam-explosion reactor. Chemical Engineering Journal, 268, 47–59. doi.org/10.1016/j.cej.2015.01.020. 

Stickel, J. J., Knutsen, J. S., Liberatore, M. W., Luu, W., Bousfield, D. W., Klingenberg, D. J., Monz, T. O. (2009). Rheology measurements of a biomass slurry: an inter-laboratory study. Rheologica Acta, 48(9), 1005–1015.   doi.org/10.1007/s00397-009-0382-8

Westover TL, Ryan JCB, Matthew AC, Hernandez S, Hopper apparatus for processing a bulk solid, and related systems and methods, application no. 15/235,895, filed 08/12/2016. 

Westover TL, Phanphanich M, Ryan, JC. Comprehensive rheological characterization of chopped and ground switchgrass, Biofuels 2015; 6(5-6): 249-260.   doi:10.1080/17597269.2015.1091189

Westover TL, et al. Impact of scale on thermochemical pretreatment of southern pine for pyrolysis conversion. Biofuels 2013; 4(1): 45-61.


Process Integration

The Effect of Biomass Densification on Structural Sugar Release and Yieldin Biofuel Feedstock and Feedstock Blends

Rapid analysis of composition and reactivity in cellulosic biomassfeedstocks with near-infrared spectroscopy

Compositional Analysis of Biomass Reference Materials: Results from anInterlaboratory Study

Improved methods for the determination of drying conditions and fractioninsoluble solids (FIS) in biomass pretreatment slurry

Online residence time distribution measurement of thermochemical biomasspretreatment reactors


System-wide Throughput Analysis

ANL Publications

Canter, C.E., Dunn, J.B., Han, J., Wang, Z., and Wang, M. (2015). Policy Implications of Allocation Methods in the Life Cycle Analysis of Integrated Corn and Corn Stover Ethanol Production. Bioenerg. Res. 9, 77–87.  DOI: 10.1007/s12155-015-9664-4.

Han, J., Tao, L., and Wang, M. (2017). Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways. Biotechnology for Biofuels 10, 21.  doi.org/10.1186/s13068-017-0698-z.

Han, J., Elgowainy, A., Dunn, J.B., and Wang, M.Q. (2013). Life cycle analysis of fuel production from fast pyrolysis of biomass. Bioresource Technology 133, 421–428.  doi.org/10.1016/j.biortech.2013.01.141.

Wang, Z., Dunn, J.B., Han, J., and Wang, M.Q. (2014). Effects of co-produced biochar on life cycle greenhouse gas emissions of pyrolysis-derived renewable fuels. Biofuels, Bioprod. Bioref. 8, 189–204.   DOI: 10.1002/bbb.1447.

Wang, M., Han, J., Dunn, J.B., Cai, H., and Elgowainy, A. (2012). Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environmental Research Letters 7, 045905.  doi.org/10.1088/1748-9326/7/4/045905.

INL Publications

Smith, W.A., Bonner, I.J., Kenney, K.L., and Wendt, L.M. 2013. Practical considerations of moisture in baled biomass feedstock. Biofuels, 4:95-110.  DOI: 10.4155/bfs.12.74.

Wendt, L.M., Bonner I.J., Hoover A.N., Emerson R.M., Smith W.A. (2014). "Influence of Airflow on Laboratory Storage of High Moisture Corn Stover." Bioenergy Research. 1-11.  doi.org/10.1007/s12155-014-9455-3.

NREL Publications

Biddy, M.J., Davis, R., Humbird, D., Tao, L., Dowe, N., Guarnieri, M.T., Linger, J.G., Karp, E.M., Salvachua, D., Vardon, D.R., and Beckham, G.T. “The Techno-Economic Basis for Coproduct Manufacturing to Enable Hydrocarbon Fuel Production from Lignocellulosic Biomass.” 2016. ACS Sustainable Chem. Eng. 4, 3196-3211.  DOI:10.1021/acssuschemeng.6b00243.

Chen, X., Shekiro, J., Pschorn, T., Sabourin, M., Tucker, M.P., and Tao, L. “Techno-Economic Analysis of the Deacetylation and Disk Refining Process: Characterizing the Effect of Refining Energy and Enzyme Usage on Minimum Sugar Selling Price and Minimum Ethanol Selling Price.” 2015. Biotechnology for Biofuels 8, 173.   doi.org/10.1186/s13068-015-0358-0.

Davis, R., Tao, L., Tan, E.C.D., Biddy, M.J., Beckham, G.T., Scarlata, C., Jacobson, J., Cafferty, K., Ross, J., Lukas, J., Knorr, D., and Schoen, P. 2013. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons. NREL/TP-5100-60223, National Renewable Energy Laboratory, Golden, CO.   Link.

Davis, R., Tao, L., Scarlata, C., Tan, E.C.D., Ross, J., Lukas, J., and Sexton, D. 2015. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Catalytic Conversion of Sugars to Hydrocarbons. NREL/TP-5100-62498, National Renewable Energy Laboratory, Golden, CO.  Link

Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., Schoen, P., Lukas, J., Olthof, B., Worley, M., Sexton, D., and Dudgeon, D. 2011. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover. NREL/TP-5100-47764, National Renewable Energy Laboratory, Golden, CO.  DOI: 10.2172/1013269

ORNL Publications

Ebadian, Mahmood, Shahab Sokhansanj, Erin Webb. 2017.  Estimating the required logistical resources to support the development of a sustainable corn stover bioeconomy in the USA. Biofuels, Bioproducts & Biorefining  11:129–149.  DOI: 10.1002/bbb.1736

Oyedeji, O., S. Sokhansanj, and E. Webb. 2017. Spatial Analysis of Stover Moisture Content during Harvest Season in the United States. Transactions of the ASABE (in press).

U.S. Department of Energy. 2016. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 1: Economic Availability of Feedstocks. M. H. Langholtz, B. J. Stokes, and L. M. Eaton (Leads), ORNL/TM-2016/160. Oak Ridge National Laboratory, Oak Ridge, TN. 448p {Logistics modeling in Chapter 6 – To the Biorefinery: Delivered Forestland and Agricultural Resources}.  Link.

Wang, Yu, Mahmood Ebadian, Shahab Sokhansanj Erin Webb, Anthony Lau. 2017.  Impact of the biorefinery size on the logistics of corn stover supply – A scenario analysis. Applied Energy. doi.org/10.1016/j.apenergy.2017.03.056.

PNNL Publications

Dutta A, Sahir A, Tan E, Humbird D, Snowden-Swan L, Meyer P, Ross J, Sexton D, Yap R, Lukas J. 2015 Process design and economics for the conversion of lignocellulosic biomass to hydrocarbon fuels—thermochemical research pathways with in situ and ex situ upgrading of fast pyrolysis vapors. NREL/TP-5100-62455, PNNL-23823.   Link.

Dutta A, Schaidle JA, Humbird D, Baddour FG, Sahir A. Conceptual Process Design and Techno-Economic Assessment of Ex Situ Catalytic Fast Pyrolysis of Biomass: A Fixed Bed Reactor Implementation Scenario for Future Feasibility. Top. Catal. 2016, 59, 2-18.  doi:10.1007/s11244-015-0500-z

Jones SB, PA Meyer, LJ Snowden-Swan, AB Padmaperuma, E Tan, A Dutta, J Jacobson, and K Cafferty.  2013. “Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway”.   PNNL-23053; NREL/TP-5100-61178, Pacific Northwest National Laboratory, Richland, WA .  doi:10.2172/1126275

Li B, L Ou, Q Dang, PA Meyer, SB Jones, RC Brown, and M Wright.  2015.  "Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production."  Bioresource Technology 196:49-56.  doi:10.1016/j.biortech.2015.07.073.

Zacher, AH, MV Olarte, DM Santosa, DC Elliott, SB Jones.  2013. A Review and Perspective of Recent Bio-Oil Hydrotreating Research”,  Green Chemistry, advance article online 10/4/2013.  DOI: 10.1002/chin.201412274


Process Control and Optimization

INL Publications

Aston J, Thompson D, Westover TL, Performance assessment of dilute-acid leaching to improve corn stover quality for thermochemical conversion, Fuel 2016; 168: 311-319. DOI: 10.1016/j.fuel.2016.08.056.


Bonner I, Delwiche M, Wendt L, Smith W, Kenney K. A Laboratory Scale Reactor for Simulating Biomass Storage for Bioenergy.  2015 ASABE Annual International Meeting: American Society of Agricultural and Biological Engineers; 2015. DOI: 10.13031/aim.20152189420.


Amber N. Hoover, Jaya Shankar Tumuluru, Farzaneh Teymouri, Janette Moore, and Garold Gresham.   Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover, Bioresource Technology 164 (2014) 128–135, http://dx.doi.org/10.1016/j.biortech.2014.02.005.


Howe D, Westover TL, Carpenter D, Santosa D, Emerson R, Deutch S, Starace A, Kutnyakov I, Lukins C. Field-to-fuel performance testing of lignocellulosic feedstocks: an integrated study of the fast pyrolysis/hydrotreating pathway, Energy & Fuels 2015; 29: 3188-3197DOI: 10.1021/acs.energyfuels.5b00304.

 

Lacey JA, Emerson RM, Westover TL, Thompson D. Ash reduction strategies in corn stover facilitated by anatomical and size fractionation, Biomass and Bioenergy 2016; 90: 173-180. DOI: 10.1016/j.biombioe.2016.04.006.

 

Wendt LM, Bonner IJ, Hoover AN, Emerson RM, Smith WA. Influence of Airflow on Laboratory Storage of High Moisture Corn Stover. BioEnergy Research. 2014;7(4):1212-22. DOI: 10.1007/s12155-014-9455-3.


Westover TL, Phanphanich M, Ryan, JC. Comprehensive rheological characterization of chopped and ground switchgrass, Biofuels 2015; 6(5-6): 249-260. DOI: 10.1080/17597269.2015.1091189.


C. Luke Williams, Rachel M. Emerson and Jaya Shankar Tumuluru.  Biomass Compositional Analysis for Conversion to Renewable Fuels and Chemicals, Chapter 11 Biomass Volume Estimation and Valorization for Energy, INTECH 2017 http://dx.doi.org/10.5772/65777.


LBNL Publications

Papa, G., Feldman, T., Sale, K. L., Adani, F., Singh, S., & Simmons, B. A. (2017). “Parametric study for the optimization of ionic liquid pretreatment of corn stover”. Bioresource Technology. doi, 10.1016/j.biortech.2017.05.167. 

 

To, T., Procter, K., Simmons, B., Subashchandrabose, S., & Atkin, R. (2017). “Low cost ionic liquid-water mixtures for effective extraction of carbohydrate and lipid from algae”. [10.1039/C7FD00158D]. Faraday Discuss. doi,10.1039/c7fd00158d.


NREL Publications

Hariswaran Sitaraman, Erik M. Kuhn, Ambarish Nag, Michael A. Sprague, Melvin P. Tucker, and Jonathan J. Stickel.  Multiphysics modeling and simulation of high-solids dilute-acid pretreatment of corn stover in a steam-explosion reactor, Chemical Engineering Journal Volume 268, 15 May 2015, Pages 47–59, https://doi.org/10.1016/j.cej.2015.01.020.

 

Hongliang Wang, Hao Ruan, Haisheng Pei, Huamin Wang, Xiaowen Chen, Melvin P. Tucker, John R. Cort,   and  Bin Yang.  Biomass-derived lignin to jet fuel range hydrocarbons via aqueous phase hydrodeoxygenation, Green Chemistry, 2015,17, 5131-5135, DOI:10.1039/C5GC01534K.

 

Xiaowen Chen, Wei Wang, Peter Ciesielski, Olev Trass, Sunkyu Park, Ling Tao, and Melvin P. Tucker.  Improving Sugar Yields and Reducing Enzyme Loadings in the Deacetylation and Mechanical Refining (DMR) Process through Multistage Disk and Szego Refining and Corresponding Techno-Economic Analysis, ACS Sustainable Chem. Eng., 2016, 4 (1), pp 324–333, DOI: 10.1021/acssuschemeng.5b01242.

PNNL Publications

Elliott DC.  2015.  "Biofuel from fast pyrolysis and catalytic hydrodeoxygenation."  Current Opinion in Chemical Engineering 9:59-65.  doi:10.1016/j.coche.2015.08.008

 

Wang H, SJ Lee, MV Olarte, and AH Zacher.  2016.  "Bio-oil stabilization by hydrogenation over reduced metal catalysts at low temperatures."  ACS Sustainable Chemistry & Engineering 4(10):5533-5545. doi:10.1021/acssuschemeng.6b01270