Contributions and Publications - Feedstock Variability/Specification Development


Carpenter, D., Westover, T., Czernic, S., et al., (2014). Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chemistry 16: 384-406. doi:10.1039/C3GC41631C.

Carpenter, D., Westover, T., Howe, D., et al., (2017). Catalytic hydroprocessing of fast pyrolysis oils: impact of biomass feedstock on process efficiency. Biomass & Bioenergy 96: 142-151. DOI: 10.1016/j.biombioe.2016.09.012

Emerson, R., Hoover, A., Ray, A., Lacey, J., Cortez, M., Payne, C., et al., (2014). Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks. Biofuels 5 (3):17. DOI: 10.1080/17597269.2014.913904

Hernandez, S., Westover, T.L., et al., Feeding properties and behavior of hammer- and knife-milled pine, In press, accepted manuscript.

Hoover, A., Tumuluru, J., Teymouri, F., Moore, J., Gresham, G., (2014). Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover. Bioresource Technology 164:128.

Howe, D.,Westover, T., Carpenter, D., et al., (2015). Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks: An Integrated Study of the Fast Pyrolysis/Hydrotreating Pathway. Energy & Fuels 29: 3188-3197. DOI: 10.1021/acs.energyfuels.5b00304 

Kenney K.L., Smith W.A., Gresham G.L., Westover T.L., Understanding biomass feedstock variability, Biofuels 2013; 4(1): 111-127. DOI: 10.4155/bfs.12.83

Li, C., Aston, J. E., Lacey, J. A., Thompson, V. S., and Thompson, D. N., (2016). "Impact of feedstock quality and variation on biochemical and thermochemical conversion." Renewable and Sustainable Energy Reviews 65: 525-536.

Narani, A., Coffman, P., Gardner, J., Li, C., Ray, A.E., Hartley, D.S., Stettler, A., Konda, N.V.S.N.M., Simmons, B., Pray, T.R., Tanjore, D., (2017). Predictive modeling to de-risk bio-based manufacturing by adapting to variability in lignocellulosic biomass supply. Bioresource Technology, 243, 676-685.

Ramirez Corredores, M. M. and May, L. (KiOR, Inc), Process for enhancing process performance during the thermocatalytic treatment of biomass, Patent No. US2015240166. (14/634,286) 2015, Aug 27.

Ray, A., Hoover, A., Nagle, N., Chen, X., Gresham, G., (2013). Effect of pelleting on the recalcitrance and bioconversion of dilute-acid pretreated corn stover under low- and high-solids conditions. Biofuels 4:271 DOI: 10.4155/bfs.13.14

Ray, A., Li, C., Thompson, V., Daubaras, D., Nagle, N., Hartley, D., (2017). Biomass Blending and Densification: Impacts on Feedstock Supply and Biochemical Conversion Performance. Biomass Volume Estimation and Valorization for Energy. Ed. J. S. Tumuluru. Rijeka: InTech.   DOI: 10.5772/67207 

Trendewicz, A., et al., (2015). Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics. Biomass and Bioenergy 74: 15-25.

Wang, W., Chen, X., Donohoe, B., Ciesielski, P., Katahira, R., Kuhn, E., et al., (2014). Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 1: chemical and physical substrate analysis. Biotechnology for Biofuels 7:57.

Westover, T.L., Ryan, J.C.B., Matthew, A.C., Hernandez, S., Hopper apparatus for processing a bulk solid, and related systems and methods, application no. 15/235,895, filed 08/12/2016.

Westover, T.L., Phanphanich, M., Ryan, J.C. Comprehensive rheological characterization of chopped and ground switchgrass, Biofuels 2015; 6(5-6): 249-260.

Westover, T.L., et al., Impact of scale on thermochemical pretreatment of southern pine for pyrolysis conversion. Biofuels 2013; 4(1): 45-61.  

Williams, C., Emerson, R., Tumuluru, J., (2017). Biomass Compositional Analysis for Conversion to Renewable Fuels and Chemicals. Biomass Volume Estimation and Valorization to Energy. Ed. J. S. Tumuluru. Rijeka: InTech.  DOI: 10.5772/65777

Williams, C.L., Westover, T.L., et al., Determining thermal transport properties for softwoods under pyrolysis conditions, ACS Sustainable Chem. Eng, 2017; 5(1) 1019-1025.  DOI: 10.1021/acssuschemeng.6b02326